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Slide 1 of 37 About me
◼ PhD in Electrical Engineering

◼ Interested in Synthesizers, Digital Signal Processing, mathematical modeling and compilers

◼ Started programming  C and C++, assembly (DSPs, Z80, PIC, x86) and making programs for the 
HP 49G calculator
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Slide 2 of 37 First steps in Functional Programming
Back in 2007, I needed to evaluate (in C#) string expressions like 

“1/2 +  2 * a + b”

Required a lexer, parser and writing an evaluator

Found F# example

◼ My evaluator was less than F# 100 lines
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Slide 3 of 37 The F# years
◼ Wrote F# for about 5 years

◼ Worked on a model compiler, simulator and optimization engine (PhD thesis)

◼ Learned about other languages, like Haskell, Lisp, OCaml.
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Slide 4 of 37 Outline
◼ System Modeler architecture

◼ Historical context of the code base

◼ Selecting a new language

◼ Moving the code base
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Slide 5 of 37 Wolfram System Modeler
◼ Multi-domain modeling environment

◼ Uses the Modelica modeling language

◼ Integrates with the Wolfram Language
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Slide 6 of 37 Applications
◼ Electrical, Hydraulic, Mechanic, Thermal, Biological, Chemical, Fluid, Magnetic, etc.
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Slide 7 of 37 Personal applications
https://blog.wolfram.com/2020/07/23/digital-vintage-sound-modeling-analog-synthesizers-with-
the-wolfram-language-and-system-modeler/
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Slide 8 of 37 Wolfram System Modeler architecture
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Slide 9 of 37 System Modeler history
◼ Originally called MathModelica

◼ 1998 (?)MathCore Engineering founded 

◼ 1999(?) Initial version written in Mathematica (Wolfram Language) 

◼ 2006 MathModelica v1.0 is released

◼ 2007 OpenModelica starts (sister project to MathModelica)

◼ 2011 MathCore becomes Wolfram MathCore, Leonardo joins the company

◼ 2011 Wolfram SystemModeler is released 
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Slide 10 of 37 System Modeler Kernel development history
◼ 1995 (?)  RML (Relational Meta-Language), SML-like data types

◼ 2005 (?) MetaModelica v1 (used RML core compiler and code generator)

◼ System Modeler kernel and OpenModelica kernel were written in MetaModelica
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Slide 11 of 37 The good parts of MetaModelica
◼ Static types ML style

◼ Pattern matching

◼ First class functions

◼ Portable (generates C code)
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Slide 12 of 37 The bad parts of MetaModelica
◼ Verbose

◼ Not so good performance, slow compile speed

◼ No anonymous functions, no closures, no if-expressions

◼ No nested pattern matching, match all inputs

◼ Print debug only

◼ Difficult error handling

◼ Bugs: broken tail-calls, many others
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Slide 13 of 37 Relation between SystemModeler and OpenModelica
◼ Big part of the code was shared

◼ No stable API

◼ Lots of time spent upstreaming changes

◼ Little control on design changes or decisions
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Slide 14 of 37 Desired scenario
◼ OpenModelica needed to split their project and maintain a stable API
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Slide 15 of 37 Initial approach
◼ F# based tool to analyze and extract the relevant parts

◼ Simplifies merging upstream changes

◼ Smaller diffs for relevant parts
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Slide 16 of 37 Moving to other language
◼ The API are the data types

◼ The data types changed less than the functions

◼ The data can be communicated by serializing it
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Slide 17 of 37 Exchanging data
◼ The key is automatically generating data converters
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Slide 18 of 37 Picking a new programming language
As many as possible of the following:

◼ Possible to automatically convert the existing code into readable code

◼ Static types (catch errors at compile time)

◼ Union types (easier to represent our complex data)

◼ Pattern matching (easier to process symbolic data)

◼ Functional (simplifies writing complex behavior)

◼ Succinct (less code more meaning)

◼ Debugger (print-debug is not enough)

◼ Fast execution (good for our users)

◼ Fast compilation (good for us developers)
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Slide 19 of 37 Benchmarking different languages
Existing benchmarks do not reflect our actual requirements
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Slide 20 of 37 Our benchmark
Common tasks our kernel performs

◼ Perform symbolic manipulations of expressions

◼ Evaluate expressions

◼ Store and lookup values

◼ Common graph operations

We created a small representative program

◼ Optimization algorithm evaluating symbolic expressions
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Slide 21 of 37 Results
Measuring verbosity (lines of code) vs execution time.

Out[!]=

Ocaml
MetaModelica
Mathematica
C++
Haskell
F#(.NET)

Note: this was done in 2014. No Rust, no Julia. We overlooked Java.
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Slide 22 of 37 Second benchmark
Similar program without symbolic manipulation

Out[!]=

Ocaml
MetaModelica
PyPy
C++
LuaJIT
F#(.NET)

FuncProgSweden.nb     23



Slide 23 of 37 And the winner is...
Languages with strong cons:

◼ C++: automatically converted code would not be very readable probably more verbose

◼ F#: ran fast on Windows (.NET), but slow on Linux and Mac (using Mono as of 2014) 

◼ Haskell: existing code has side effects (hash tables) converting the code was challenging

The real contenders

◼ OCaml: Fast, close to MetaModelica

◼ Mathematica (WL): very succinct, lost of the functionality we required is builtin. Making a good 
translation would be difficult.

The winner is OCaml

◼ Performance increase of ~5-10x

◼ Decent reduction of lines of code

◼ Simpler translation of code thanks to introduction of PPX syntax extensions (just when I made 
the benchmarks)
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Slide 24 of 37 Cover: MetaModelica to OCaml converter
Learning OCaml while making the converter

◼ Parse MetaModelica code

◼ Analyze error paths

◼ Simplify the code (dead code elimination, unreachable code, match simplification)

◼ Simplify error paths

◼ Generate readable code, make it more idiomatic

◼ Preserve code comments
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Slide 25 of 37 Failure propagation
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Slide 26 of 37 Matchcontinue implementation
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Slide 27 of 37 Matchcontinue implementation
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Slide 28 of 37 Matchcontinue optimization
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Slide 29 of 37 Data conversion
We generated MetaModelica to/from OCaml converters
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Slide 30 of 37 Performance of converted code
Note: not all optimizations where implemented at this stage.

Out[!]=

Ocaml
MetaModelica->Ocaml
MetaModelica
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Slide 31 of 37 Switching the backend to OCaml
First step
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Slide 32 of 37 Performance of the mixed Kernel
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Slide 33 of 37 Other advantages with OCaml
◼ More warnings

◼ Unused variables

◼ Unused arguments

◼ Uncovered, redundant patter matching cases

◼ Useful libraries

◼ Tools

◼ Intellisense

◼ Time traveling debugger

◼ Parser generator

◼ Code formatter

◼ Language features

◼ All functional features: anonymous functions, curried functions, if-expressions, nested matching

◼ Functors (parametrized modules)

◼ Strong typing + type inference

◼ Syntax extensions
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Slide 34 of 37 MetaModelica v2
OpenModelica working on a new Frontend using MetaModelica v2

◼ New code was very imperative (if-statements, for loops)

◼ Mutability everywhere

◼ New code was harder to analyze and optimize
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Slide 35 of 37 Break the dependency
The objectives of SystemModeler and OpenModelica did not align

◼ Convert all the code (including the frontend library) to OCaml

◼ ~510k lines of MetaModelica

◼ ~220k lines of OCaml (43%)

◼ Create our own frontend from scratch

◼ Idiomatic OCaml

◼ Easier to maintain and fix bugs
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Slide 36 of 37 Conclusion
◼ OCaml unleashed the real Functional world

◼ Performance improvements from 2-10x

◼ The code is easier to read than before

◼ Static types help find, fix bugs and focus our testing efforts

◼ Fixing problems that took more than a week now take days
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Slide 37 of 37 Thank you!
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