
Transferring the System Modeler
code base to OCaml

Leonardo Laguna Ruiz

Wolfram MathCore

Slide 1 of 37 About me
◼ PhD in Electrical Engineering

◼ Interested in Synthesizers, Digital Signal Processing, mathematical modeling and compilers

◼ Started programming C and C++, assembly (DSPs, Z80, PIC, x86) and making programs for the
HP 49G calculator

2 FuncProgSweden.nb

Slide 2 of 37 First steps in Functional Programming
Back in 2007, I needed to evaluate (in C#) string expressions like

“1/2 + 2 * a + b”

Required a lexer, parser and writing an evaluator

Found F# example

◼ My evaluator was less than F# 100 lines

FuncProgSweden.nb 3

Slide 3 of 37 The F# years
◼ Wrote F# for about 5 years

◼ Worked on a model compiler, simulator and optimization engine (PhD thesis)

◼ Learned about other languages, like Haskell, Lisp, OCaml.

4 FuncProgSweden.nb

Slide 4 of 37 Outline
◼ System Modeler architecture

◼ Historical context of the code base

◼ Selecting a new language

◼ Moving the code base

FuncProgSweden.nb 5

Slide 5 of 37 Wolfram System Modeler
◼ Multi-domain modeling environment

◼ Uses the Modelica modeling language

◼ Integrates with the Wolfram Language

6 FuncProgSweden.nb

Slide 6 of 37 Applications
◼ Electrical, Hydraulic, Mechanic, Thermal, Biological, Chemical, Fluid, Magnetic, etc.

FuncProgSweden.nb 7

Slide 7 of 37 Personal applications
https://blog.wolfram.com/2020/07/23/digital-vintage-sound-modeling-analog-synthesizers-with-
the-wolfram-language-and-system-modeler/

8 FuncProgSweden.nb

Slide 8 of 37 Wolfram System Modeler architecture

FuncProgSweden.nb 9

Slide 9 of 37 System Modeler history
◼ Originally called MathModelica

◼ 1998 (?)MathCore Engineering founded

◼ 1999(?) Initial version written in Mathematica (Wolfram Language)

◼ 2006 MathModelica v1.0 is released

◼ 2007 OpenModelica starts (sister project to MathModelica)

◼ 2011 MathCore becomes Wolfram MathCore, Leonardo joins the company

◼ 2011 Wolfram SystemModeler is released

10 FuncProgSweden.nb

Slide 10 of 37 System Modeler Kernel development history
◼ 1995 (?) RML (Relational Meta-Language), SML-like data types

◼ 2005 (?) MetaModelica v1 (used RML core compiler and code generator)

◼ System Modeler kernel and OpenModelica kernel were written in MetaModelica

FuncProgSweden.nb 11

Slide 11 of 37 The good parts of MetaModelica
◼ Static types ML style

◼ Pattern matching

◼ First class functions

◼ Portable (generates C code)

12 FuncProgSweden.nb

Slide 12 of 37 The bad parts of MetaModelica
◼ Verbose

◼ Not so good performance, slow compile speed

◼ No anonymous functions, no closures, no if-expressions

◼ No nested pattern matching, match all inputs

◼ Print debug only

◼ Difficult error handling

◼ Bugs: broken tail-calls, many others

FuncProgSweden.nb 13

Slide 13 of 37 Relation between SystemModeler and OpenModelica
◼ Big part of the code was shared

◼ No stable API

◼ Lots of time spent upstreaming changes

◼ Little control on design changes or decisions

14 FuncProgSweden.nb

Slide 14 of 37 Desired scenario
◼ OpenModelica needed to split their project and maintain a stable API

FuncProgSweden.nb 15

Slide 15 of 37 Initial approach
◼ F# based tool to analyze and extract the relevant parts

◼ Simplifies merging upstream changes

◼ Smaller diffs for relevant parts

16 FuncProgSweden.nb

Slide 16 of 37 Moving to other language
◼ The API are the data types

◼ The data types changed less than the functions

◼ The data can be communicated by serializing it

FuncProgSweden.nb 17

Slide 17 of 37 Exchanging data
◼ The key is automatically generating data converters

18 FuncProgSweden.nb

Slide 18 of 37 Picking a new programming language
As many as possible of the following:

◼ Possible to automatically convert the existing code into readable code

◼ Static types (catch errors at compile time)

◼ Union types (easier to represent our complex data)

◼ Pattern matching (easier to process symbolic data)

◼ Functional (simplifies writing complex behavior)

◼ Succinct (less code more meaning)

◼ Debugger (print-debug is not enough)

◼ Fast execution (good for our users)

◼ Fast compilation (good for us developers)

FuncProgSweden.nb 19

Slide 19 of 37 Benchmarking different languages
Existing benchmarks do not reflect our actual requirements

20 FuncProgSweden.nb

Slide 20 of 37 Our benchmark
Common tasks our kernel performs

◼ Perform symbolic manipulations of expressions

◼ Evaluate expressions

◼ Store and lookup values

◼ Common graph operations

We created a small representative program

◼ Optimization algorithm evaluating symbolic expressions

FuncProgSweden.nb 21

Slide 21 of 37 Results
Measuring verbosity (lines of code) vs execution time.

Out[!]=

Ocaml
MetaModelica
Mathematica
C++
Haskell
F#(.NET)

Note: this was done in 2014. No Rust, no Julia. We overlooked Java.

22 FuncProgSweden.nb

Slide 22 of 37 Second benchmark
Similar program without symbolic manipulation

Out[!]=

Ocaml
MetaModelica
PyPy
C++
LuaJIT
F#(.NET)

FuncProgSweden.nb 23

Slide 23 of 37 And the winner is...
Languages with strong cons:

◼ C++: automatically converted code would not be very readable probably more verbose

◼ F#: ran fast on Windows (.NET), but slow on Linux and Mac (using Mono as of 2014)

◼ Haskell: existing code has side effects (hash tables) converting the code was challenging

The real contenders

◼ OCaml: Fast, close to MetaModelica

◼ Mathematica (WL): very succinct, lost of the functionality we required is builtin. Making a good
translation would be difficult.

The winner is OCaml

◼ Performance increase of ~5-10x

◼ Decent reduction of lines of code

◼ Simpler translation of code thanks to introduction of PPX syntax extensions (just when I made
the benchmarks)

24 FuncProgSweden.nb

Slide 24 of 37 Cover: MetaModelica to OCaml converter
Learning OCaml while making the converter

◼ Parse MetaModelica code

◼ Analyze error paths

◼ Simplify the code (dead code elimination, unreachable code, match simplification)

◼ Simplify error paths

◼ Generate readable code, make it more idiomatic

◼ Preserve code comments

FuncProgSweden.nb 25

Slide 25 of 37 Failure propagation

26 FuncProgSweden.nb

Slide 26 of 37 Matchcontinue implementation

FuncProgSweden.nb 27

Slide 27 of 37 Matchcontinue implementation

28 FuncProgSweden.nb

Slide 28 of 37 Matchcontinue optimization

FuncProgSweden.nb 29

Slide 29 of 37 Data conversion
We generated MetaModelica to/from OCaml converters

30 FuncProgSweden.nb

Slide 30 of 37 Performance of converted code
Note: not all optimizations where implemented at this stage.

Out[!]=

Ocaml
MetaModelica->Ocaml
MetaModelica

FuncProgSweden.nb 31

Slide 31 of 37 Switching the backend to OCaml
First step

32 FuncProgSweden.nb

Slide 32 of 37 Performance of the mixed Kernel

FuncProgSweden.nb 33

Slide 33 of 37 Other advantages with OCaml
◼ More warnings

◼ Unused variables

◼ Unused arguments

◼ Uncovered, redundant patter matching cases

◼ Useful libraries

◼ Tools

◼ Intellisense

◼ Time traveling debugger

◼ Parser generator

◼ Code formatter

◼ Language features

◼ All functional features: anonymous functions, curried functions, if-expressions, nested matching

◼ Functors (parametrized modules)

◼ Strong typing + type inference

◼ Syntax extensions

34 FuncProgSweden.nb

Slide 34 of 37 MetaModelica v2
OpenModelica working on a new Frontend using MetaModelica v2

◼ New code was very imperative (if-statements, for loops)

◼ Mutability everywhere

◼ New code was harder to analyze and optimize

FuncProgSweden.nb 35

Slide 35 of 37 Break the dependency
The objectives of SystemModeler and OpenModelica did not align

◼ Convert all the code (including the frontend library) to OCaml

◼ ~510k lines of MetaModelica

◼ ~220k lines of OCaml (43%)

◼ Create our own frontend from scratch

◼ Idiomatic OCaml

◼ Easier to maintain and fix bugs

36 FuncProgSweden.nb

Slide 36 of 37 Conclusion
◼ OCaml unleashed the real Functional world

◼ Performance improvements from 2-10x

◼ The code is easier to read than before

◼ Static types help find, fix bugs and focus our testing efforts

◼ Fixing problems that took more than a week now take days

FuncProgSweden.nb 37

Slide 37 of 37 Thank you!

38 FuncProgSweden.nb

